## OOModelsHome.CapabilitiesOfZOOMQ3D History

Hide minor edits - Show changes to markup

**Abstraction wells**\\

**Single and multi-layer abstraction wells**\\

Pumped boreholes can be placed at any node within the model domain. Abstraction rates can vary temporally and wells can both abstract water from the aquifer and inject water into it.

Pumped boreholes can be placed at any node within the model domain. Abstraction rates can vary temporally and wells can both abstract water from the aquifer and inject water into it. ZOOMQ3D incorporates multi-layer wells which enables abstraction to be assigned to a number of layers; the model calculates how much water is drawn from each layer.

Simulation time is divided into time-steps, stress periods and blocks. The length of a time-step is equivalent to the length of time between which successive solutions are calculated for the model's state variables. A stress period represents a period of time during which all model stresses remain constant e.g. recharge, groundwater abstraction or discharge to rivers. Stress periods are divided into one or more time-steps. A block is composed of one or more stress periods. The rationale for the use of blocks is predominantly related to the simplification of the organisation of time-variant data, for example, groundwater abstraction or recharge rates, within input files. The number of stress periods in each block is the same for all blocks within a simulation.

Simulation time is divided into time-steps, stress periods and blocks. The length of a time-step is equivalent to the length of time between which successive solutions are calculated for the model's state variables. A stress period represents a period of time during which all model stresses remain constant e.g. recharge, groundwater abstraction or discharge to rivers. Stress periods are divided into one or more time-steps. A block is composed of one or more stress periods. The rationale for the use of blocks is predominantly related to the simplification of the organisation of time-variant data, for example, groundwater abstraction or recharge rates, within input files. The number of stress periods in each block is the same for all blocks within a simulation.

Back to the homepage.

Simulation time is divided into time-steps, stress periods and blocks. The length of a time-step is equivalent to the length of time between which successive solutions are calculated for the model's state variables. A stress period represents a period of time during which all model stresses remain constant e.g. recharge, groundwater abstraction or discharge to rivers. Stress periods are divided into one or more time-steps. A block is composed of one or more stress periods. The rationale for the use of blocks is predominantly related to the simplification of the organisation of time-variant data, for example, groundwater abstraction or recharge rates, within input files. The number of stress periods in each block is the same for all blocks within a simulation.

**Local grid refinement**

The main advantage of ZOOM over other groundwater flow models is grid refinement. ZOOM solves the groundwater flow equations using the finite difference method. If more detailed grids are required, then conventional techniques require a gradual increase in mesh spacing. This can lead to a large number of model nodes where they are not required. Grid refinement in ZOOM works by superimposing finite-difference grids at different scales on the main grid and reduces the number of nodes and hence reduces the time a model takes to run. Grid refinement is a very powerful technique as it enables models to be developed at the catchment or regional scale and these models used to investigate groundwater flow at a small scale easily. Examples of the small scale groundwater features include pumped wells, springs, etc.

**Local Grid Refinement**\\

**Local grid refinement**\\

This section summarises the capabilities of ZOOMQ3D

**Multiple layers**

ZOOMQ3D can incorporate multiple layers of finite difference nodes. The elevation of these layers can vary across the model and the base elevation of one layer can be higher than the top of the layer below it. The separation of model layers simplifies the representation of groundwater systems that contain aquifers separated aquitards. This because the flow through low permeability layers, which is assumed to be vertical, is represented by the vertical leakage term connecting two finite difference nodes within the upper and lower aquifer.

**Local grid refinement**

ZOOMQ3D incorporates a mesh refinement procedure which aids the solution of problems related to scale. The density of finite difference nodes can be increased by adding successively finer rectangular grids in discrete areas of the model domain. The mesh can be refined in separate areas and grids can be refined multiple times in the same location in order to zoom into a specific model feature, for example an abstraction borehole or a river reach.

**Confined - unconfined conditions**

Both confined and unconfined aquifers can be modelled. At confined finite difference nodes transmissivity and storage are independent of groundwater head. At unconfined nodes transmissivity is a function of saturated thickness and the storage term incorporates specific yield. In the top model layer finite different nodes can be defined as being confined, unconfined or convertible. Convertible nodes switch between unconfined and confined behaviour when the groundwater head rises above its top elevation. In each of the lower model layers, all the nodes must be specified as being either confined or convertible.

Finite difference nodes dewater as the groundwater head drops below their base. In this case the node is removed from the matrix of finite difference equations.

**Heterogeneity and anisotropy**

Models can be heterogeneous and anisotropic. Different hydraulic parameter values can be specified at each finite difference node and hydraulic conductivity may be different in the x and y-directions. It is assumed that the Cartesian co-ordinate system is aligned with the principal axes of the hydraulic conductivity tensor.

**Moving boundaries**

Model nodes can de-water and re-wet. Nodes are made inactive when the groundwater level falls below their base and vice versa. The re-wetting of model nodes depends on the groundwater head in adjacent finite difference nodes.

**Variable hydraulic conductivity with depth (VKD)**

Vertical variations in hydraulic conductivity with depth can be specified within model layers or across model layers by defining VKD profiles. The transmissivity at a node is calculated by integrating the hydraulic conductivity over the vertical saturated thickness of the node.

**Recharge**

Recharge can vary spatially and temporally. Recharge is always applied to the upper-most active node.

**Abstraction wells**

Pumped boreholes can be placed at any node within the model domain. Abstraction rates can vary temporally and wells can both abstract water from the aquifer and inject water into it.

**Rivers**

Dendritic rivers basins are simulated using a series of interconnected river reaches. The hydraulic parameters characterising a reach can vary along the river as can the degree of connection with the aquifer. The transfer of water between the aquifer and rivers is simulated as is the accretion of baseflow along each river branch. Discharges to the river can be specified in any reach, for example to represent a sewage treatment works, and the discharge rate can vary over time. Both fully penterating and perched rivers can be simulated.

**Head-dependent leakage nodes**

In addition to rivers, a second head-dependent leakage mechanism is included in ZOOMQ3D. The flow through leakage nodes is proportional to the difference between its elevation and the groundwater head at the finite difference node to which it is connected. Flow can occur in either direction i.e. into or out of the aquifer. Leakage nodes can be used to model spring flows, lakes or estuaries, for example.

**Springs**

This model feature has been developed to simulated spring flows specifically. The flow out of a spring depends on the transmissivity of the surrounding finite difference nodes. Spring flows are represented by an 'abstraction' which removes water from the aquifer at the location of the spring until the water table falls below the level of the ground surface.

**Time discretisation**

Simulation time is divided into time-steps, stress periods and blocks. The length of a time-step is equivalent to the length of time between which successive solutions are calculated for the model's state variables. A stress period represents a period of time during which all model stresses remain constant e.g. recharge, groundwater abstraction or discharge to rivers. Stress periods are divided into one or more time-steps. A block is composed of one or more stress periods. The rationale for the use of blocks is predominantly related to the simplification of the organisation of time-variant data, for example, groundwater abstraction or recharge rates, within input files. The number of stress periods in each block is the same for all blocks within a simulation.

**Local Grid Refinement**

The main advantage of ZOOM over other groundwater flow models is grid refinement. ZOOM solves the groundwater flow equations using the finite difference method. If more detailed grids are required, then conventional techniques require a gradual increase in mesh spacing. This can lead to a large number of model nodes where they are not required. Grid refinement in ZOOM works by superimposing finite-difference grids at different scales on the main grid and reduces the number of nodes and hence reduces the time a model takes to run. Grid refinement is a very powerful technique as it enables models to be developed at the catchment or regional scale and these models used to investigate groundwater flow at a small scale easily. Examples of the small scale groundwater features include pumped wells, springs, etc.